The generator matrix

 1  0  1  1  1  1  1 X+3  1  1  1 2X  1  1 X+3  1  1  0  1  1  1  1  1 2X  1  1 2X+6  1  1  1 X+6  1  1  1  1  0  1  1  6  1  1  6  1  1  1  1  1  0  1  1  1  1  1  1 2X X+3  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  3  1  X  1  1 2X+3  1  1  1
 0  1 2X+4  8 X+3 X+1 X+2  1 2X  4 2X+8  1 2X+4 X+3  1  8  0  1 2X X+1 X+2  4 2X+8  1  6 2X+7  1  5 X+7 X+6  1 X+2 2X+5 2X  4  1 2X+6  7  1 X+5 2X  1 2X+6  4 X+2  7 X+5  1  0 X+3 2X+4 X+1  8 2X+8  1  1 X+1 2X+4  7 X+7 2X+7 2X+7 2X+1 X+5 2X+8 2X+2  8 2X+5  5  5 X+7 2X+5 2X+6  1  3  1 2X+7  X  1 X+4  5 2X+4
 0  0  3  0  3  6  6  0  0  6  3  3  0  6  3  3  6  6  3  0  6  3  0  6  3  6  0  6  3  0  6  0  6  0  0  6  6  6  3  3  6  3  3  3  3  0  0  0  0  3  3  6  0  0  0  3  3  0  0  0  6  3  6  3  3  6  6  6  3  3  0  0  3  3  0  6  0  0  3  6  6  6
 0  0  0  6  6  3  6  6  6  0  3  0  0  6  6  6  0  6  0  3  3  3  3  0  0  0  0  6  3  6  6  3  3  0  3  0  0  3  6  3  6  0  6  0  6  0  6  6  6  0  3  0  3  6  6  0  0  3  6  0  3  6  6  0  6  0  3  6  3  0  6  0  3  3  3  3  6  3  3  6  0  0

generates a code of length 82 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 159.

Homogenous weight enumerator: w(x)=1x^0+492x^159+1248x^160+1028x^162+996x^163+288x^165+810x^166+612x^168+768x^169+240x^171+66x^172+6x^177+6x^195

The gray image is a code over GF(3) with n=738, k=8 and d=477.
This code was found by Heurico 1.16 in 0.376 seconds.